Reg. No. : \qquad
Name : \qquad

Sixth Semester B.Sc. Degree Examination, April 2023 First Degree Programme under CBCSS Mathematics

 Elective

 Elective

 MM 1661.1: GRAPH THEORY

 MM 1661.1: GRAPH THEORY

 (2018 Admission Onwards)

 (2018 Admission Onwards)}

Time: 3 Hours
Max. Marks : 80

SECTION - A

Answer all the questions.

1. Define a simple graph.
2. Draw a complete graph on five vertices.
3. Define a complete bipartite graph.
4. Define incidence matrix of a graph.
5. State Cayley Theorem.
6. Define bridge of a graph.
7. Define a Hamiltonian graph.
8. Define closure of a graph.
9. State Kuratowski's Theorem.
10. Define a planar graph.

SECTION-B

Answer any eight questions.
11. Define a k-regular graph. Give an example for a 3 - regular graph.
12. State and prove the First theorem of Graph Theory.
13. Define complement of a graph G. Find the complement of the cycle C_{5}.
14. Define a connected Graph. Write $\omega(G)$ for a connected graph.
15. Let G be an acyclic graph with n vertices and k connected components, then prove that G has $n-k$ edges.
16. Let G be a connected graph with n vertices and $n-1$ edges. Prove that G is a tree.
17. Define Konigsberg Bridge Problem.
18. Explain Travelling salesman Problem in graph theoretical terms.
19. If the closure $c(G)$ of a simple graph G is Hamiltonian, prove that G is Hamiltonian.
20. Is $K_{3,3}$ Hamiltonian. Justify your answer.
21. If G is a simple planar graph, then prove that G has a vertex of degree less than 6.
22. Let P be a convex polyhedron and G be its corresponding Polyhedral graph. Let V_{n} denote the number of vertices of G of degree $n \geq 3$ and let f_{n} denote the number of faces of G of degree n and e is the number of edges of G, then prove that $\sum_{n \geq 3} n v_{n}=\sum_{n \geq 3} n f_{n}=2 e$.

SECTION - C

Answer any six questions.

23. Define odd or even vertex of a graph. In any graph G, prove that there is an even number of odd vertices.
24. Prove that a tree with n vertices has precisely $n-1$ edges.
25. Let G be a graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and let A denotes the adjacency matrix of G with respect to the listing of vertices. Let $B=\left(b_{i j}\right)$ be the matrix $B=A+A^{2}+\ldots+A^{n-1}$. Then G is a connected graph if and only if B has no zero entries off the main diagonal.
26. Let v be a vertex of the connected graph G. Then prove that v is a cut vertex of G if and only if there are two vertices u and w of G, both different from v, such that v is on every u-w path in G.
27. Prove that an edge e of a graph G is a bridge if and only if e is not any part of any cycle in G .
28. Let G be a graph in which the degree of every vertex is at least two, then prove that G contains a cycle.
29. State and prove Euler's Formula.
30. Define (a) Subdivision of a graph (b) Contraction on an edge, using examples.
31. Let G be a simple 3 -connected graph with at least 5 vertices. Then prove that G has a contractible edge.
($6 \times 4=24$ Marks)
SECTION - D

Answer any two questions.
32. (a) Prove that every $u-v$ walk contains a $u-v$ path for any 2 vertices u and v of a graph G.
(b) Let G be a graph with n vertices and q edges. Then prove that G has at least $n-\omega(G)$ edges.
33. Let G be a simple graph with at least 3 vertices. Then prove that G is 2-connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint u-v paths in G.
34. (a) Prove that a connected graph G has an Euler trail if and only if it has at most two odd vertices.
(b) Let T be a tree with at least 2 vertices and let $P=u_{0} u_{1} \ldots u_{n}$ be a longest path in T. Then prove that $d\left(u_{0}\right)=d\left(u_{1)}=1\right.$.
35. State and Prove Dirac Theorem.

$$
\text { (} 2 \times 15=30 \text { Marks })
$$

